Vers van de pers: Alledaagse Paradoxen

0 Flares 0 Flares ×

In Alledaagse Paradoxen gebruikt Max van den Broek eeuwenoude filosofische paradoxen om hedendaagse problemen op te lossen. Hier vertelt hij hoe we oneindig veel kunnen doen in een eindig leven.

De dood is een van de belangrijkste thema’s in de hedendaagse filosofie. In een samenleving waarin het geloof in een eeuwig leven na de dood steeds minder voorkomt, moeten we steeds meer nadenken over de eindigheid van ons bestaan. We worstelen met de moeilijke en confronterende vragen die onze eindigheid met zich meebrengt. Als ik binnenkort niet meer besta, wat betekent dit dan voor hoe ik mijn leven nu moet leiden? Hoe wil ik herinnerd worden? Kan ik mijn bestaan verlengen door iets waardevols op de wereld achter te laten, zoals een bedrijf, een muziekstuk of een leuk filosofieboekje?

Ons leven mag temporeel gezien eindig zijn; het zit vol oneindigheden. Zo kunnen we bijvoorbeeld oneindig veel dingen doen binnen ons eindige leven. Carrière maken, kinderen krijgen, een taal leren, een marathon    rennen, alle zeven wereldwonderen bezoeken, diepzeeduiken en parachutespringen; dit alles en nog oneindig veel    andere dingen kunnen we in ons leven doen. Hiervoor hoeven we enkel de verhouding tussen het eindige en het oneindige te doorgronden.

Zeno’s ‘paradox’
De Griekse filosoof Zeno merkte rond 450 voor Christus al op dat oneindigheden binnen eindigheden kunnen bestaan. Hij beschreef wat bekendstaat als Zeno’s paradox:

Achilles en een schildpad doen een hardloopwedstrijd. Omdat Achilles zoveel sneller is dan de schildpad, krijgt de schildpad een voorsprong van honderd meter. De vraag is, wanneer haalt Achilles de schildpad in?

Nooit, volgens Zeno. Want wanneer Achilles aankomt op de plek waar de schildpad van start is gegaan, is de schildpad iets verder. De schildpad staat immers niet stil. Wanneer Achilles verder rent naar het punt waar de schildpad nu is, is de schildpad alweer iets verder. Want hoewel de schildpad langzaam is, staat hij nog steeds niet stil. Wanneer Achilles rent naar de plek waar de schildpad dan is, is de schildpad alwéér iets verder. Kortom, iedere keer dat Achilles aankomt op de plek waar de schildpad zojuist was, is de schildpad alweer iets verder. Het verschil tussen de schildpad en Achilles wordt steeds kleiner, maar verdwijnt nooit, omdat de schildpad ook vooruit blijft bewegen. Achilles haalt de schildpad daarom nooit in.

Na duizenden jaren filosoferen is Zeno’s ‘paradox’ nog altijd enorm interessant, maar een echte paradox is het niet. Zeno maakt in zijn beschrijving van de paradox namelijk een redeneerfout. Zeno heeft gelijk dat Achilles langs oneindig veel punten moet waar de schildpad al geweest is en oneindig vaak is de schildpad alweer een stukje verder. Echter, dit impliceert niet dat Achilles de schildpad nooit inhaalt.

Zeno’s redeneerfout
Om het waar te laten zijn dat Achilles de schildpad nooit inhaalt, moet het waar zijn dat Achilles zo lang kan blijven rennen als hij wil zonder dat hij de schildpad inhaalt. Zeno’s argument bewijst dit echter niet.

Zeno stelt voor dat iedere keer dat Achilles aankomt op de plek waar de schildpad begon, de schildpad alweer verder is. Laten we hier wat getallen aan koppelen. Laten we zeggen dat Achilles tien meter per seconde rent en de schildpad vijf meter per seconde. Aangezien de schildpad honderd meter voorsprong had, kost het Achilles tien seconden om aan te komen op de plek waar de schildpad begon. De schildpad is in die tijd vijftig meter verder gerend, dus nu is het verschil nog vijftig meter. Om aan te komen op het punt waar de schildpad nu is, heeft Achilles dus vijf seconden nodig. In die tijd is de schildpad vijfentwintig meter verder gerend. Naar dat punt rent Achilles in twee en een halve seconde, waarna de schildpad nog twaalf en een halve meter voor ligt.

Hoe gaat dit verder? Zoals Zeno opmerkt, moet Achilles nog oneindig vaak naar een punt rennen waar de schildpad al geweest is en iedere keer is de schildpad al iets verder. Achilles moet dus oneindig veel punten doorkruisen voordat hij de schildpad inhaalt. Maar merk op dat Achilles iedere keer minder tijd nodig heeft om het volgende punt in de reeks te bereiken, omdat hij steeds dichter bij de schildpad komt. De eerste keer heeft hij tien seconden nodig om aan te komen waar de schildpad eerder was, daarna vijf seconden, daarna twee en een halve seconde, enzovoorts. Om uit te rekenen hoe lang het duurt voordat Achilles de schildpad inhaalt, moeten we dus oneindig veel getallen bij   elkaar optellen. Echter, en dit is het cruciale punt, hoewel dit een optelsom is van oneindig veel getallen, is de uitkomst van deze optelsom niet oneindig.

Oneindigheid binnen eindigheid
Om te zien dat de uitkomst van een oneindig lange optelsom niet per se oneindig groot is, dient de lezer er pen en papier of een rekenmachine bij te pakken. Laten we optellen hoeveel tijd Achilles nodig heeft om langs ieder punt te komen waar de schildpad voor hem geweest is:

0 + 10 = 10 seconden (punt 1)

10 + 5 = 15 seconden (punt 2)

15 + 2,5 = 17,5 seconden (punt 3)

17,5 + 1,25 = 18,75 seconden (punt 4)

18,75 + 0,625 = 19,375 seconden (punt 5)

19,375 + 0,3125 = 19,6875 seconden (punt 6)

Op papier kunnen we deze oneindige som natuurlijk niet helemaal uitschrijven, maar dat is ook niet nodig om te begrijpen wat de uitkomst van de optelsom wordt. Het is namelijk vrijwel direct duidelijk dat de uitkomst niet groter wordt dan twintig. (De achterdochtige lezer is uitgedaagd deze stelling te testen door de optelsom nog wat verder door te voeren en wie wiskunde A had op de middelbare school kan de stelling ook als volgt controleren: Achilles’ afgelegde afstand is tien meter per seconde oftewel 10*x, de afgelegde afstand van de schildpad is vijf meter per seconde plus de voorsprong van honderd meter oftewel 100+5*x. Op het moment dat Achilles de schildpad inhaalt hebben ze een even grote afstand afgelegd, dus bereken x voor 10*x = 100+5*x, waarbij x het aantal seconden is dat Achilles nodig heeft om de schildpad in te halen.)

Op naar oneindige bucketlists
Zeno ging er ten onrechte van uit dat oneindig veel dingen doen noodzakelijkerwijs oneindig veel tijd kost, waardoor je oneindig veel dingen nooit af kunt krijgen. Maar het is niet waar dat oneindig veel dingen noodzakelijkerwijs oneindig veel tijd kosten. Als het om een oneindige reeks van steeds kleiner wordende taken gaat, kan deze reeks wel degelijk in eindige tijd worden uitgevoerd. Daarom kan Achilles de schildpad inhalen, in precies oneindig veel stappen en twintig seconden.

En wij kunnen dit dus ook. Hoewel ons leven eindig is, kunnen we oneindig veel dingen doen. Hierbij geldt natuurlijk wel dat de dingen die we nog kunnen doen steeds kleiner worden. Grootse plannen moeten we daarom vroeg in ons leven inplannen; een wereldreis, carrière maken en kinderen krijgen, daar moeten we niet te lang mee wachten. Later, als we grijs zijn, hebben we nog tijd voor kleine dingetjes, zoals een potje dammen of de boodschappen doen. En tegen het einde van ons leven kunnen we alleen nog maar borduren, grassprietjes tellen en nóg veel minutieuzere taakjes verrichten. Maar, wel nog oneindig vaak in ons eindige leven.

Max van den Broek, Alledaagse Paradoxen. ISVW Uitgevers, 2018.

0 Flares Twitter 0 Facebook 0 Google+ 0 LinkedIn 0 0 Flares ×

Related Posts

Schermafbeelding 2019-04-07 om 20.59.54

Jeukwoorden

Schermafbeelding 2019-04-07 om 20.54.21

Husserl roept op tot actie

Para-doxale column René ten Bos: Kant

Schermafbeelding 2019-04-07 om 20.40.05

Een betondicht gesprek

Reageer